860 research outputs found

    Direct prediction of the solute softening-to-hardening transition in W-Re alloys using stochastic simulations of screw dislocation motion

    Full text link
    Interactions among dislocations and solute atoms are the basis of several important processes in metals plasticity. In body-centered cubic (bcc) metals and alloys, low-temperature plastic flow is controlled by screw dislocation glide, which is known to take place by the nucleation and sideward relaxation of kink pairs across two consecutive \emph{Peierls} valleys. In alloys, dislocations and solutes affect each other's kinetics via long-range stress field coupling and short-range inelastic interactions. It is known that in certain substitutional bcc alloys a transition from solute softening to solute hardening is observed at a critical concentration. In this paper, we develop a kinetic Monte Carlo model of screw dislocation glide and solute diffusion in substitutional W-Re alloys. We find that dislocation kinetics is governed by two competing mechanisms. At low solute concentrations, nucleation is enhanced by the softening of the Peierls stress, which overcomes the elastic repulsion of Re atoms on kinks. This trend is reversed at higher concentrations, resulting in a minimum in the flow stress that is concentration and temperature dependent. This minimum marks the transition from solute softening to hardening, which is found to be in reasonable agreement with experiments

    A rigorous sequential update strategy for parallel kinetic Monte Carlo simulation

    Full text link
    The kinetic Monte Carlo (kMC) method is used in many scientific fields in applications involving rare-event transitions. Due to its discrete stochastic nature, efforts to parallelize kMC approaches often produce unbalanced time evolutions requiring complex implementations to ensure correct statistics. In the context of parallel kMC, the sequential update technique has shown promise by generating high quality distributions with high relative efficiencies for short-range systems. In this work, we provide an extension of the sequential update method in a parallel context that rigorously obeys detailed balance, which guarantees exact equilibrium statistics for all parallelization settings. Our approach also preserves nonequilibrium dynamics with minimal error for many parallelization settings, and can be used to achieve highly precise sampling

    Formation of Nanotwin Networks during High-Temperature Crystallization of Amorphous Germanium

    Full text link
    Germanium is an extremely important material used for numerous functional applications in many fields of nanotechnology. In this paper, we study the crystallization of amorphous Ge using atomistic simulations of critical nano-metric nuclei at high temperatures. We find that crystallization occurs by the recurrent transfer of atoms via a diffusive process from the amorphous phase into suitably-oriented crystalline layers. We accompany our simulations with a comprehensive thermodynamic and kinetic analysis of the growth process, which explains the energy balance and the interfacial growth velocities governing grain growth. For the ⟨111⟩\langle111\rangle crystallographic orientation, we find a degenerate atomic rearrangement process, with two zero-energy modes corresponding to a perfect crystalline structure and the formation of a Σ3\Sigma3 twin boundary. Continued growth in this direction results in the development a twin network, in contrast with all other growth orientations, where the crystal grows defect-free. This particular mechanism of crystallization from amorphous phases is also observed during solid-phase epitaxial growth of ⟨111⟩\langle111\rangle semiconductor crystals, where growth is restrained to one dimension. We calculate the equivalent X-ray diffraction pattern of the obtained nanotwin networks, providing grounds for experimental validation

    Diffuse-interface polycrystal plasticity: Expressing grain boundaries as geometrically necessary dislocations

    Full text link
    The standard way of modeling plasticity in polycrystals is by using the crystal plasticity model for single crystals in each grain, and imposing suitable traction and slip boundary conditions across grain boundaries. In this fashion, the system is modeled as a collection of boundary-value problems with matching boundary conditions. In this paper, we develop a diffuse-interface crystal plasticity model for polycrystalline materials that results in a single boundary-value problem with a single crystal as the reference configuration. Using a multiplicative decomposition of the deformation gradient into lattice and plastic parts, i.e. F(X,t) = F^L(X,t) F^P(X,t), an initial stress-free polycrystal is constructed by imposing F^L to be a piecewise constant rotation field R^0(X), and F^P = R^0(X)^T, thereby having F(X,0) = I, and zero elastic strain. This model serves as a precursor to higher order crystal plasticity models with grain boundary energy and evolution.Comment: 18 pages, 7 figure
    • …
    corecore